Fourier - Gauss transforms of the Askey - Wilson polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L815
(http://iopscience.iop.org/0305-4470/30/24/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Fourier-Gauss transforms of the Askey-Wilson polynomials

N M Atakishiyev \dagger
Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico

Received 22 October 1997

Abstract

We discuss classical Fourier-Gauss integral transforms for a five-parameter family of the Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$.

The goal of the present paper is to study the Fourier-Gauss transformation properties of a family of the five-parameter Askey-Wilson polynomials [1]

$$
\left.\begin{array}{rl}
p_{n}(x ; a, b, c, d \mid q): & =a^{-n}(a b, a c, a d ; q)_{n 4} \phi_{3}\left[\begin{array}{c}
q^{-n}, a b c d q^{n-1}, a \mathrm{e}^{\mathrm{i} \theta}, a \mathrm{e}^{-\mathrm{i} \theta} \\
a b, a c, a d,
\end{array}, q, q\right.
\end{array}\right]
$$

in the variable $x=\cos \theta, 0 \leqslant \theta \leqslant \pi$. Throughout this paper we will employ the standard notations of q-analysis [2,3], in particular

$$
\begin{equation*}
(a ; q)_{k}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right) \quad\left(a_{1}, \ldots, a_{n} ; q\right)_{k}=\prod_{j=1}^{n}\left(a_{j} ; q\right)_{k} . \tag{2}
\end{equation*}
$$

The Askey-Wilson polynomials (1) are symmetric with respect to the four parameters a, b, c, d and

$$
\begin{equation*}
p_{n}(-x ; a, b, c, d \mid q)=(-1)^{n} p_{n}(x ;-a,-b,-c,-d \mid q) . \tag{3}
\end{equation*}
$$

For the values $0<|q|<1$ of the parameter q they are orthogonal over the finite interval $-1 \leqslant x \leqslant 1$ with respect to the continuous measure
$w_{A W}(x ; a, b, c, d \mid q) \mathrm{d} x=2 q^{-1 / 8} e_{q}(q) \vartheta_{1}\left(\theta, q^{1 / 2}\right) \prod_{v=a, b, c, d} e_{q}\left(v \mathrm{e}^{\mathrm{i} \theta}\right) e_{q}\left(v \mathrm{e}^{-\mathrm{i} \theta}\right) \sin \theta \mathrm{d} \theta$
where $\vartheta_{1}(z, q)$ is the theta-function and the q-exponential function $e_{q}(z)$ is given by

$$
\begin{equation*}
e_{q}(z):=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}=(z ; q)_{\infty}^{-1} \tag{5}
\end{equation*}
$$

Later on it has become clear that the modular and periodic properties of the theta-function, which enters the measure (4), allow one to introduce another continuous orthogonality
\dagger On leave of absence from: Institute of Physics, Azerbaijan Academy of Sciences, H.Javid pros. 33, Baku 370143, Azerbaijan. E-mail address: natig@matcuer.unam.mx
relation for the Askey-Wilson polynomials $p_{n}(\sin \kappa s ; a, b, c, d \mid q), q=\exp \left(-2 \kappa^{2}\right)$, over the full real line $-\infty<s<\infty$. The Ramanujan-type measure with an infinite support
$w(\sin \kappa s ; a, b, c, d \mid q) \mathrm{d} \sin \kappa s=\prod_{v=a, b, c, d} e_{q}\left(\mathrm{i} v \mathrm{e}^{-\mathrm{i} \kappa s}\right) e_{q}\left(-\mathrm{i} v \mathrm{e}^{\mathrm{i} \kappa s}\right) \mathrm{e}^{-s^{2}} \cos \kappa s \mathrm{~d} s$
thus obtained from (4) has an advantage in that it admits the transformation $q \rightarrow q^{-1}$ [4-6].
Once the Ramanujan-type continuous measure of orthogonality (6) was established, it has been realized that the classical Fourier-Gauss transform might relate the Askey-Wilson polynomials (1) with different values of the parameter q. This proved to be true first for the q-Hermite polynomials [7], which are a particular case of the Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$ with vanishing parameters a, b, c, d. The corresponding Fourier-Gauss transform has the form

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / r} H_{n}(\sin \kappa s \mid q) \mathrm{d} s=\mathrm{i}^{n} q^{n^{2} / 4} h_{n}(\sinh \kappa r \mid q) \mathrm{e}^{-r^{2} / 2} \tag{7}
\end{equation*}
$$

where $q=\exp \left(-2 \kappa^{2}\right)$ and $h_{n}(x \mid q):=\mathrm{i}^{-n} H_{n}\left(\mathrm{i} x \mid q^{-1}\right)$ are the q^{-1}-Hermite polynomials [8]. Then the $\operatorname{big} q$-Hermite polynomials $H_{n}(x ; a \mid q):=p_{n}(x ; a, 0,0,0 \mid q)$ and Al-SalamChihara polynomials $p_{n}(x ; a, b):=p_{n}(x ; a, b, 0,0 \mid q)$ have been shown to have simple behaviour with respect to the classical Fourier-Gauss transform $[9,10]$.

The derivation of the Fourier-Gauss transforms in [9] and [10] is based upon combining the integral transform (7) with the expansions (or connection coefficients formulae) for the big q-Hermite and the Al-Salam-Chihara polynomials in terms of the q-Hermite polynomials. It turns out that one can employ the same idea for the general case of the Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$ with non-zero values of the parameters a, b, c, d.

We begin with the relation

$$
\begin{equation*}
p_{n}(x ; a, b, c, d \mid q)=\sum_{k=0}^{n} C_{n, k} p_{k}(x ; a, \beta, \gamma, \delta \mid q) \tag{8}
\end{equation*}
$$

between the Askey-Wilson polynomials, which depend on two sets of the parameters a, b, c, d and a, β, γ, δ. The connection coefficients in (8)

$$
\begin{gather*}
C_{n, k}=C_{n, k}(a, b, c, d ; a, \beta, \gamma, \delta \mid q):=q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{k-n} \frac{(a b, a c, a d ; q)_{n}\left(a b c d q^{n-1} ; q\right)_{k}}{\left(a b, a c, a d, a \beta \gamma \delta q^{k-1} ; q\right)_{k}} \\
\times{ }_{5} \phi_{4}\left[\begin{array}{c}
q^{k-n}, a b c d q^{n+k-1}, a \beta q^{k}, a \gamma q^{k}, a \delta q^{k} \\
a \beta \gamma \delta q^{2 k}, a b q^{k}, a c q^{k}, a d q^{k}
\end{array} ; q\right] \tag{9}
\end{gather*}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient

$$
\left[\begin{array}{l}
n \tag{10}\\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

have been derived in [1] by using the finite-interval orthogonality relation for the AskeyWilson polynomials (see [2]). The particular case of (8) with $\beta=\gamma=\delta=0$ gives the relation

$$
\begin{equation*}
p_{n}(x ; a, b, c, d \mid q)=\sum_{k=0}^{n} A_{n, k}(q) H_{k}(x ; a \mid q) \tag{11}
\end{equation*}
$$

between the Askey-Wilson $p_{n}(x ; a, b, c, d \mid q)$ and the big q-Hermite $H_{k}(x ; a \mid q)$ polynomials. As follows from (9), the constant $A_{n, k}(q)$ in (11) is equal to

$$
\begin{align*}
A_{n k}(q):= & C_{n, k}(a, b, c, d ; a, 0,0,0 \mid q) \\
= & q^{k(k-n)}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} a^{k-n}\left(a b c d q^{n-1} ; q\right)_{k}\left(a b q^{k}, a c q^{k}, a d q^{k} ; q\right)_{n-k} \\
& \quad \times{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{k-n}, a b c d q^{n+k-1}, 0,0 \\
a b q^{k}, a c q^{k}, a d q^{k}
\end{array} ; q, q\right] . \tag{12}
\end{align*}
$$

Note that the inverse expansion with respect to (11)

$$
\begin{equation*}
H_{n}(x ; a \mid q)=\sum_{k=0}^{n} A_{n, k}^{-1}(q) p_{k}(x ; a, b, c, d \mid q) \tag{13}
\end{equation*}
$$

is again a particular case of (9), but with the vanishing parameters b, c, d. The explicit form of the constant $A_{n, k}^{-1}(q)$ is

$$
\begin{align*}
A_{n, k}^{-1}(q):= & C_{n, k}(a, 0,0,0 ; a, b, c, d \mid q) \\
& =q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{a^{k-n}}{\left(a b c d q^{k-1} ; q\right)_{k}} 4 \phi_{3}\left[\begin{array}{c}
q^{k-n}, a b q^{k}, a c q^{k}, a d q^{k} \\
a b c d q^{2 k}, 0,0
\end{array} ; q, q\right] . \tag{14}
\end{align*}
$$

The next step is to combine the expansion (11) with the classical Fourier-Gauss transform for the continuous big q-Hermite polynomials, derived in [9]. It has two alternative forms
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} H_{n}(\sin \kappa s ; a \mid q) \mathrm{d} s=\left\{\begin{array}{c}\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{3 k^{2} / 4-(n+1) k / 2}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \\ \times(\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r \mid q) \\ \mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k(k-n)}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} c_{k, n}(q) \\ \times(-\mathrm{i} a)^{k} h_{n-k}(\sinh \kappa r ; a \mid q)\end{array}\right.$
where the constant $c_{k, n}(q)$ is equal to

$$
\begin{equation*}
c_{k, n}(q)=\sum_{j=0}^{k} \frac{\left(q^{-k} ; q\right)_{j}}{(q ; q)_{j}} q^{(n+j / 2) j / 2} \tag{16}
\end{equation*}
$$

Multiplying thus both sides of (11) by the factor $(2 \pi)^{-1} \exp \left(\mathrm{i} s r-s^{2} / 2\right)$ and integrating them over the variable s within infinite limits by using first (15a) gives
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b, c, d \mid q) \mathrm{d} s=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} B_{n, k}(q) h_{n}(\sinh \kappa r \mid q)$.
Here the constant $B_{n, k}(q)$ is equal to

$$
B_{n, k}(q)=\mathrm{i}^{k} q^{k^{2} / 4} \sum_{j=0}^{n-k} q^{j(j-1) / 2}\left[\begin{array}{c}
k+j \tag{18}\\
j
\end{array}\right]_{q}(-a)^{j} A_{n, k+j}(q)
$$

In the particular case when the parameters $c=d=0$, the constant $A_{n, k}(q)$ reduces to

$$
A_{n, k}(q)=q^{(n-k)(n-k-1) / 2}\left[\begin{array}{l}
n \tag{19}\\
k
\end{array}\right]_{q}(-b)^{n-k} \quad c=d=0
$$

To verify (19), one needs to use in (12) a special case of the Chu-Vandermonde q-sum for ${ }_{2} \phi_{1}\left(q^{-n}, b ; c ; q, q\right)$ with a vanishing parameter b, that is

$$
\begin{equation*}
{ }_{2} \phi_{1}\left(q^{-n}, 0 ; c ; q, q\right)=q^{n(n-1) / 2} \frac{(-c)^{n}}{(c ; q)_{n}} . \tag{20}
\end{equation*}
$$

Consequently, for $c=d=0$ the Fourier-Gauss transform (17) reduces to that for the Al-Salam-Chihara polynomials

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b \mid q) \mathrm{d} s \\
& \quad=\mathrm{i}^{n} q^{n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{3 k^{2} / 4-(n+1) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(\mathrm{i} a)^{k} s_{k}(b / a ; q) h_{n-k}(\sinh \kappa r \mid q) \tag{21}
\end{align*}
$$

derived in [10]. The Stielties-Wigert polynomials $s_{k}(z ; q)$ in (21) are defined [2,11] as

$$
s_{n}(z ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{22}\\
k
\end{array}\right]_{q} q^{k(k-n)} z^{k}
$$

In a manner similar to the derivation of (17), from (11) and (15b) it follows that one can alternatively represent (17a) as
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b, c, d \mid q) \mathrm{d} s=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} D_{n, k}(q) h_{k}(\sinh \kappa r ; a \mid q)$
where the constant $D_{n, k}(q)$ is equal to

$$
D_{n, k}(q)=\mathrm{i}^{k} \sum_{j=0}^{n-k} q^{(k-j)^{2} / 4}\left[\begin{array}{c}
k+j \tag{23}\\
j
\end{array}\right]_{q} a^{j} c_{j, k+j}(q) A_{n, k+j}(q)
$$

whereas $A_{n, k}(q)$ and $c_{n, k}(q)$ are given by (12) and (16), respectively. The Fourier-Gauss transform (17b) enables one to represent its right-hand side in terms of the Askey-Wilson q^{-1}-polynomials [5, 6]

$$
\begin{equation*}
\tilde{p}_{n}(x ; a, b, c, d \mid q):=\mathrm{i}^{-n} p_{n}\left(\mathrm{i} x ; a, b, c, d \mid q^{-1}\right) \tag{24}
\end{equation*}
$$

Indeed, from (13) and (24) it follows that

$$
\begin{equation*}
h_{n}(x ; a \mid q)=\sum_{k=0}^{n} \mathrm{i}^{k-n} A_{n, k}^{-1}\left(q^{-1}\right) \tilde{p}_{k}(x ; a, b, c, d \mid q) . \tag{25}
\end{equation*}
$$

Now substituting (25) in the right-hand side of (17b) gives
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} p_{n}(\sin \kappa s ; a, b, c, d \mid q) \mathrm{d} s=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} E_{n, k}(q) \tilde{p}_{k}(\sinh \kappa r ; a, b, c, d \mid q)$
where the constant

$$
\begin{equation*}
E_{n, k}(q)=\sum_{j=0}^{n-k} \mathrm{i}^{-j} D_{n, k+j}(q) A_{k+j, k}^{-1}\left(q^{-1}\right) \tag{26}
\end{equation*}
$$

Note that an explicit form of the constant $A_{n, k}^{-1}\left(q^{-1}\right)$, which enters the relations (25) and (26), is readily obtained from (14) upon using the inversion formula

$$
\begin{equation*}
\left(a ; q^{-1}\right)_{n}=q^{-n(n-1) / 2}(-a)^{n}\left(a^{-1} ; q\right)_{n} \tag{27}
\end{equation*}
$$

with respect to the transformation $q \rightarrow q^{-1}$. In particular, when $a=q^{-1}$ from (27) follows that the q-binomial coefficient (10) enjoys the property

$$
\left[\begin{array}{l}
n \tag{28}\\
k
\end{array}\right]_{q^{-1}}=q^{k(k-n)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

To derive another pair of Fourier-Gauss transforms for the Askey-Wilson polynomials (1) one may start with the inverse expansion with respect to (25). In (11) change $x \rightarrow \mathrm{i} x$ and transform $q \rightarrow q^{-1}$. Taking into account the definition (24), this results in

$$
\begin{equation*}
\tilde{p}_{n}(x ; a, b, c, d \mid q)=\sum_{k=0}^{n} \mathrm{i}^{k-n} A_{n, k}\left(q^{-1}\right) h_{k}(x ; a \mid q) \tag{29}
\end{equation*}
$$

The relation (29) can be combined with the Fourier-Gauss transforms for the big q^{-1}-Hermit polynomials [9]

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} s r-s^{2} / 2} h_{n}(\sinh \kappa s ; a \mid q) \mathrm{d} s \\
& \quad=\mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} q^{k^{2} / 4+(1-n) k / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-a)^{k} H_{n-k}(\sin \kappa r \mid q) \tag{30a}\\
& \quad=\mathrm{i}^{-n} q^{-n^{2} / 4} \mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} c_{k, n}\left(q^{-1}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{k} H_{n-k}(\sin \kappa r ; a \mid q) \tag{30b}
\end{align*}
$$

which are related to (15a) and (15b), respectively, by a replacement of the base $q \rightarrow q^{-1}$ (i.e. $\kappa \rightarrow \mathrm{i} \kappa$). Multiplying thus both sides of (29) for $x=\sinh \kappa x$ by the factor $(2 \pi)^{-1 / 2} \exp \left(-\mathrm{i} s r-s^{2} / 2\right)$ and integrating them over the variable s within infinite limits by using (30a) or (30b) gives

$$
\begin{gather*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} \tilde{p}_{n}(\sinh \kappa s ; a, b, c, d \mid q) \mathrm{d} s=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} M_{n, k}(q) H_{k}(\sin \kappa r \mid q) \tag{31a}\\
=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} N_{n, k}(q) H_{k}(\sin \kappa r ; a \mid q) \tag{31b}
\end{gather*}
$$

where the constants $M_{n, k}(q)$ and $N_{n, k}(q)$ are given by

$$
\begin{align*}
& M_{n, k}(q)=\mathrm{i}^{-n} q^{-k^{2} / 4} \sum_{j=0}^{n-k} q^{-j(j-1) / 2-k j}\left[\begin{array}{c}
k+j \\
j
\end{array}\right]_{q}(-a)^{j} A_{n, k+j}\left(q^{-1}\right) \tag{32a}\\
& N_{n, k}(q)=\mathrm{i}^{-n} \sum_{j=0}^{n-k} q^{-(k+j)^{2} / 4}\left[\begin{array}{c}
k+j \\
j
\end{array}\right]_{q} a^{j} A_{n, k+j}\left(q^{-1}\right) c_{j, k+j}\left(q^{-1}\right) \tag{32b}
\end{align*}
$$

It remains only to employ the expansion (13) in the right-hand side of (31b) to obtain

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i} s r-s^{2} / 2} \tilde{p}_{n}(\sinh \kappa s ; a, b, c, d \mid q) \mathrm{d} s \\
& \quad=\mathrm{e}^{-r^{2} / 2} \sum_{k=0}^{n} R_{n, k}(q) p_{k}(\sin \kappa r ; a, b, c, d \mid q) \tag{31c}
\end{align*}
$$

Here, the constant $R_{n, k}(q)$ is equal to

$$
\begin{equation*}
R_{n, k}(q)=E_{n, k}^{-1}(q)=\sum_{j=0}^{n-k} N_{n, k+j}(q) A_{k+j, k}^{-1}(q) \tag{33}
\end{equation*}
$$

The relations (17) and (31) thus provide explicit forms of the Fourier-Gauss transforms for a hierarchy of the five-parameter Askey-Wilson polynomials (1), defined in terms of the basic hypergeometric series ${ }_{4} \phi_{3}$. When two or three of the parameters a, b, c, d vanish, they coincide with the Fourier-Gauss transforms for the Al-Salam-Chihara [10], and the big q-Hermite [9] polynomials, respectively. In principle, one can use the same technique for finding Fourier-Gauss transforms of more general families of basic hypergeometric polynomials (for instance, at the ${ }_{8} \phi_{7}$-level), but their explicit forms become more and more complicated as a number of the parameters increases.

Another interesting research direction is to find Fourier-Gauss transforms for the ${ }_{4} \phi_{3}$ biorthogonal rational functions of Al-Salam and Ismail [12, 13]. They depend on the same number of parameters as the Askey-Wilson family (1). The lower level of the Al-SalamIsmail rational functions (that is, their particular case with the four vanishing parameters a, b, c and d) corresponds to the Rogers-Szegö polynomials [14-16], which are related to the Stieltjest-Wigert polynomials [2] through the classical Fourier-Gauss transform [?]. It is of interest to find Fourier-Gauss transforms for the next levels of the Al-Salam-Ismail family.

Discussions with B Berndt, F Leyvraz and K B Wolf are gratefully acknowledged. This work was partially supported by the UNAM-DGAPA project IN106595.

References

[1] Askey R and Wilson J A 1985 Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials Mem. Am. Math. Soc. 54 1-55
[2] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[3] Koekoek R and Swarttouw R F 1994 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report 94-05, Delft University of Technology
[4] Atakishiyev N M 1995 On the Askey-Wilson q-beta integral Theor. Math. Phys. 100 1035-9
[5] Atakishiyev N M 1995 Orthogonality of Askey-Wilson polynomials with respect to a measure of Ramanujan type Theor. Math. Phys. 102 23-8
[6] Atakishiyev N M 1995 Ramanujan-type continuous measures for classical q-polynomials Theor. Math. Phys. 105 1500-8
[7] Atakishiyev N M and Nagiyev Sh M On the wavefunctions of a covariant linear oscillator 1994 Theor. Math. Phys. 98 162-6
[8] Askey R 1989 Continuous q-Hermite polynomials when $q>1 q$-Series and Partitions (IMA Volumes in Mathematics and its Applications) ed D Stanton (New York: Springer) pp 151-8
[9] Atakishiyeva M K and Atakishiyev N M 1997 Fourier-Gauss transforms of the continuous big q-Hermite polynomials J. Phys. A: Math. Gen. 30 L559-65
[10] Atakishiyeva M K and Atakishiyev N M 1997 Fourier-Gauss transforms of the Al-Salam-Chihara polynomials J. Phys. A: Math. Gen. 30 L655-61
[11] Atakishiyev N M 1996 Ramanujan-type continuous measures for biorthogonal q-rational functions J. Phys. A: Math. Gen. 29 329-38
[12] Al-Salam W A and Ismail M E H 1994 A q-beta integral on the unit circle and some biorthogonal rational functions Proc. Am. Math. Soc. 121 553-61
[13] Atakishiyev N M 1996 A Ramanujan-type measure for the Al-Salam and Ismail biorthogonal rational functions Proc. Workshop on Symmetries and Integrability of Difference Equations (Esterél, Canada, May 22-29, 1994) (CRM Proceedings and Lecture Notes 9) ed D Levi, L Vinet and P Winternitz (Providence, RI: American Mathematical Society) pp 21-7
[14] Szegö G 1926 Ein Beitrag zur Theorie der Thetafunktionen Sitz. Preuss. Akad. Wiss., Phys.-Math. Klasse 19 249-52 (reprinted in 1982 Collected Papers vol 1, ed R Askey (Boston, MA: Birkhaüser) pp 795-805)
[15] Al-Salam W A and Carlitz L 1957 A q-analogue of a formula of Toscano Boll. Unione Math. Ital. 12 414-7
[16] Carlitz L 1958 Note on orthogonal polynomials related to theta functions Publ. Math. (Debrecen) 5 222-8
[17] Atakishiyev N M and Nagiyev Sh M 1994 On the Rogers-Szegö polynomials J. Phys. A: Math. Gen. 27 L611-5

